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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-152

APPROXIMATE SOLUTIONS TO OPTIMUM FLIGHT TRAJECTORIES
FOR A TURBOJET-POWERED AIRCRAFT

By Angelo Miele and James O. Cappellari, Jr.
SUMMARY

The climbing program of a turbojet-powered aircraft is analyzed with
respect to minimum time, minimum fuel consumption, and minimum horizontal
distance trajectories. By means of the indirect methods of the calculus
of varlations it is shown that, in the case where the centripetal accel-
eration effects are neglected, the totality of extremal arcs consists of
a number of constant path inclination subarcs and a number of variable
path inclination subarcs.

Under suitable hypotheses for the drag function and thrust function,
solutions in a closed form are obtained for the variable path inclination
subarc. These scolutions represent a considerable improvement with
respect to the results supplied by the so-called energy-height method,
commonly used by aircraft manufacturers. The latter is a graphical-
analytical procedure, according to which the speed for best climb is
determined as the velocity maximizing the power excess (available power
minus required power) for constant value of the energy height

2
(he = h + %§>. With the energy-height method several nonoptimum points

must be analyzed, for each value of he, as a preliminary step toward

the finding of the optimum operating condition. With the present solu-
tions, on the contrary, the optimum operating point is supplied by
straightforward computational procedure.

For particular types of drag polars, the variable path inclination
subarc may consist of several branches, one of which is subsonic, one
transonic, and one supersonic. With regard to minimum time and minimum
fuel consumption trajectories, only the subsonic and the supersonic
branches are of interest.

Numerical examples are presented for the minimum time problem, and
the effect of wing loading on the solutions is investigated.
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INTRODUCTION

In reference 1, which presents extensive bibliographical informa-
tion, trajectories of minimum time were investigated with approximate
methods for a rocket-powered aircraft.

In the present analysis a more genersal category of problems is con-
sidered, namely problems involving either time or fuel consumed or
horizontal distance flown by the aircraft. Paths extremizing any one
of the above three quantities, for the case where each of the other two
is either free of choice or prescribed, are investigated.

A turbojet-powered aircraft is considered in connection with
flight trajectories of relatively short duration. As a consequence, the
weight of the airplane is regarded as a constant in the equations of
motion.

This investigation was conducted at Purdue University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics. The authors are indebted to Professor B. A.
Reese for supplying information on the behavior of air-breathing engines
at high Mach number, and to Messrs. W. A. Fleming and E. C. Wilcox of the
NASA Lewis Research Center.

SYMBOLS
a speed of sound, ft sec™l
c specific fuel consumption, sec~l
CD drag coefficient
Cy, lift coefficient
D drag, 1lb
Di induced drag, 1b
E excess function defined by equation (8), 1b
f function defined by equation (19)

F fundamental function defined by equation (20)
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acceleration of gravity, ft sec™?
flight altitude, ft

2
energy height, h + %E’ ft

functional form defined by equation (17)

ratio of induced drag coefficient to square of 1lift
coefficient

numerical constants

lift, 1b

quantity defined by equation (LO)

Mach number

atmospheric pressure, lb £t-2

weight of fuel consumed per unit time, 1b sec™l
weight of fuel consumed, 1b

air constant, f£t2 sec™2 OR7L
reference surface, ft2

time, sec

thrust, 1b

flight velocity, ft sec™l
weight of aircraft, 1b

exponent appearing in thrust relationship defined by
equation (45)

horizontal distance flown, ft

exponent appearing in specific fuel consumption relationship
defined by equation (46)

derivative of air temperature with respect to altitude, OR rt-1



V4 ratio of specific heat at constant pressure to specific heat
at constant volume

0 path inclination with respect to horizontal plane (positive
for climbing)

A constant defined by equation (4h)

VY variable Lagrange multiplier

b ratio of pressure at altitude h to pressure at the
tropopause hy

g relative density of air

p absolute density of air, 1lb ft-u sec®

T absolute temperature of air, OR

) function defined by equation (6), £t~2 sec?

¥ function defined by equation (7), ft'2 sec?

w function defined by first member of equation (58)

Superscript:

() derivative with respect to velocity

Subscripts:

i initial point

f final point

o] zero-1ift condition, condition at M = O, or sea-level
condition

00 zero-lift condition evaluated at M =0

*

condition at the tropopause
FUNDAMENTAL HYPOTHESES AND EQUATIONS OF MOTION

The following hypotheses are used throughout the paper:

(l) The turbojet-powered aircraft is regarded as a particle.
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(2)_The small angle between the thrust vector T and the velocity
vector V 1is neglected.

(3) Aerodynamic lag is disregarded, that is, 1ift L and drag D
forces are calculated as in unaccelerated flight.

(4) Weight W 1is regarded as a constant.
(5) The centrifugal component of acceleration is not considered and

the equation of motion on the normal to the flight path is approximated
(ref. 1) as

L-W=0 (1)

(6) Only flight paths contained in a vertical plane are considered.

(7) The propulsion system is operated in such a way that thrust T,
specific fuel consumption ¢, and fuel consumed per unit time q are
known functions of velocity V and altitude h

T = T(V,h) (2)
¢ = ¢(V,h) (3)
q = Te = q(V,h) (4)

In the light of the above hypotheses, the equation of motion on the
tangent to the flight path is written (after simple transformations) as

V sin © -0 vh © (5)
- W

o - Zg (6)
- w

Ve (1)

E=T-D (8)




n' =4 (9)

the E function is denominated the excess function.
With regard to the drag function, hypothesis (3) leads to a general
expression of the form

D = Dy(h,V) + Dy(h,V,L) (10)

where D, 1is the zero lift drag. After accounting for equation (1) and

hypothesis (4), onme concludes that the D function can be written in the
form

D = D(V,h) (11)

Because of equation (2) the E function has also the form E = E(V,h).
As a consequence, both the @ function and the ¥ function can be
regarded as obeying relationships of the type

©
f

= o(V,h) (12)

v(V,h) (13)

<<
"

FORMULATION OF LAGRANGE PROBLEM

The time + necessary to transfer the turbojet-powered aircraft
from an initial condition of flight i +to a final condition of flight
f is given by .

v. V sin b

1V-f N Ve
t = J b v - J (¢ + vh')av C(1h)
i Vi

" The fuel consumed Q 1s supplied by

~H+H+=E



~N =

N
Ve Ve

= ——————h' = '
Q .. G W v a(® + vh')av (15)
i i

In turn, the distance flown horizontally X is approximated as

Ve Ve
hl
X = gy = V(@ + yh')av (16)
vy, sin 4] v
i i

.

This, evidently, only holds for trajectories which are (in the average)
not too steep.

A linear combination of the integrals (14), (15), and (16) is now
considered

I =Kjt + KoQ + KX (17)

where Kj;, Ky, and K5 are appropriate constants, and the functional
form indicated below is obtained

Ve
I-= f(® + ¥h')av (18)
v,
1

where
£ =Ky + Kpg + KgV (19)

The following Lagrange problem is formulated: Among the transfinite
set of functions h(V) and 6(V) which are solutions of the differen-
tial equation (5), to determine the special set, such that the functional
form (18) is extremized. The end conditions prescribe (for instance) the
initial and final values for velocity and altitude. The end values for
6, on the contrary, cannot be prescribed; in view of the analytical nature
of the problem, they are a consequence of the set of Euler equations.



Clearly, the above problem is a rather general one. Among its
byproducts the following particular cases can, for instance, be listed:

(1) Stationary time, free fuel consumption, free horizontal distance
(K]_:l’ K2=K5=0)

(2) stationary fuel consumption, free time, free horizontal distance
(K1 =Kz =0, Ko =1)

(3) Stationary distance, free time, free fuel consumption
(K1=K2=O, K5=l)

(ﬂ) Stationary time, free fuel consumption, given horizontal dis-
tance (K1 =1, Ko =0, K3 £ 0)

(5) Stationary fuel consumption, free time, given horizontal dis-
tance (K] =0, Kp =1, Kz #0)

(6) Stationary time, given fuel consumption, given horizontal dis-
tance (K3 =1, Kp # 0, Kz #0)
Euler Equations
A variable Lagrange multiplier p(V) is now introduced and the

following expression, denominated fundamental function, formed

F=17(&+v¥h') + p(_—iil—-- o - Wh> (20)
V sin © '

Since there are two unknown functions, the extremal properties of the

desired optimum trajectory are described in terms of two Euler eguations,
which can be written as follows

4(3F ) _oF _
dV(B@‘) 09 © (21)
dV(Bh') o - ° (22)

leading to

~N




wh' cos 8

5— =0 (23)
V sin<6.

I
(@]

iﬁ(f - )+ V—“—] - %(@ +vh') + (u - f)(% + %%w) (24)

av sin ©

The Euler equation (23) is particularly interesting because it shows
that the solution arc of the present variational problem is discontinuous,
being composed of subarcs

cos 8 =0 (25)

and subarcs
p=0 (26)

Equation (25) represents either a vertical zoom or a vertical dive,
while equation (26) is representative of a flight condition with a con-
tinuously variable path inclination. In this connection, notice that
for p = 0, equation (24) yields

o(fd)  d(fy). , _
s on & O (27)

a

2 (yf) -

dV(W )
In consideration of the fact that

a(yf) _ o(yf) . o(yf),,
v - v T Team © (28)

the following fundamental result is obtained

o(yf) _ o(fe) _
9V  oh =C (29)

- The latter can also be, more explicitly, rewritten as
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2 2
-EV(Kgg%+ K3> + KEEV?%Jf (k1 + Koa + KBV)(E + vg—fl_ - %%> -0 ()

Particular Problems

The above equation has the merit of being general; it holds for all
problems where an extremum condition (combined or not with an isoperi-
metric condition) is imposed on the time or the fuel consumed or the
horizontal distance flown by the aircraft. Under particular .circum-
stances, equation (30) simplifies as follows:

(1) Stationary time, free fuel consumption, free horizontal distance
(Kl=l’ K2=K5=O)

3E _ V2 3E _
E+VaV T 5 o] (31)

(2) Stationary fuel consumption, free time, free horizontal distance
(k1 =0, Kp =1, K5 =0)

_9q Ki@.) JE V2 IE) _
Ev(av+gah+q(E+vav g3/ ° (32)

(3) Stationary distance, free time, free fuel consumption
(K1=K2=O, K3=l)

(33)

(4) Stationary time, free fuel consumption, given horizontal dis-
tance (K} = 1, Kp =0, Ky #0)

JE V2 JE\ _
K3EV + (1 + K5V)(E + V-87 -5 E) =0 (34)

(5) Stationary fuel consumption, free time, given horizontal dis-
tance (K = 0, Ko =1, Kj # 0)

=] =



~ =
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_93 _ vV ( 3E _ V2 aE> _
EV( < Kz + g <)t Q1+ K5V) E + VSV - 0 (35)

Notice that for problems (&) and (5), that is, for problems of the
isoperimetric type, the term K5 has the meaning of a constant Lagrange

multiplier. The particular value of K5 assoclated with a given

problem must be calculated on the basis of the established isoperimetric
condition and of the prescribed boundary conditions.

ANALYTICAL SOLUTIONS FOR VARIABLE PATH INCLINATION SUBARC

Under particular hypotheses concerning thrust and drag, analytical
solutions can be obtained for the variable path inclination subarc.
Atmospheric Properties

The atmosphere in which the aircraft is flying is represented by
means of the following relationships:

P _ . m
5; = (36)

T 1l-m
= (37)

i-m
;a;_ =9 2 (58)

where
_ P

T = o (39)
m=14+ %R (k0)
o =41 (41)
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In the above equations p is the absolute pressure, R = p/pT the air
constant, and o the derivative of the temperature with respect to
altitude (-0.003566 OR ft~1 for troposphere; O °R ft-l1 for isothermal
stratosphere).

Drag Function
A parabolic approximation is now assumed for the total drag coef-

ficient

Cp = Cpo (M) + K(M)C 2 (42)

The coefficients Cp, and K are assumed to depend only on the Mach

number M. After accounting for equations (1) and (10) the drag function
becomes

_uyfx 2, AK
where
A= (k)
7P,5

Thrust and Specific Fuel Consumption

With the object of deriving simple solutions for the minimal
problem, the thrust is assumed to be the product of a function Tl(M)

of the Mach number only times a function TE(U) of the relative density
only. The Ty function is regarded as identical with the thrust T,

at the tropopause. The T, function is considered a power of the rela-
tive density o

T = Tl(M)TQ(-pp—> = T*(M)<5°—>x = Ty (M)n™ (45)

¥* *

where x 1is a constant with typical values of x = 0.75 for tropospheric
flight and x = 1 for stratospheric flight. The values of the m con-
stant are m ¥ 0.81 in the troposphere and m = 1 in the isothermal
stratosphere.
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With regard to the specific fuel consumption, the following function
is assumed:

c = c*(M)<£L>y = c*(M)nmy (46)

*

where y is a constant with typical values of y = 0.15 for tropo-
spheric flight and y = O for stratospheric f£light.

Transformation of Coordinates

The fundamental equation (30) is now transformed from the (h,V)
coordinate system into the (wx,M) system, where n is the relative
pressure aud M = V/a, the Mach number. With regard to the partial
derivatives appearing in egquation (50), use is made of the following
operators: '

a...) _10a(...)
NS (47)
2. _ 3. am-13(..)
oh aeE‘ > 2 BM] (48)

In view of these operators, equation (30) is rewritten as follows:

KBV - % _—/12) o
K3EV KQEM[aM(l+7m—é——M o]+

(K1+K2q+K3V)[ZE+M%I%(1+ 71'“—;—1M2)+7“M2%E}=0 (L9)
where
E_Lemx 1, 2 _ 2K
Wowr NDo' T4 P o0
QEM _ Teme 2 MK (51)
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q = q*(M)ﬂm(x+y) (53)
q, (M) = T, (M)c, (M) (54)
n%% = qum(x + y)nm(x+y) (55)

oq 4 log a, m(x+y)
M - Mg log M (56)

Stationary Time, Free Fuel Consumption, Free Horizontal Distance

For Ky =1, Ko = Kz = 0, equation (49) reduces to
1 2 3 >

2 3E | OF -12>=
E+7Mnaﬂ+Ma<l+7m—2—M 0 (57)

yielding (In view of the fact 5 = n(h), eq. (58) is symbolically indi-
cated as o(M,h) = 0.)

AT - B(M)xZ + C(M) = 0O (58)

where :
A R (59
B = PL;’\M—ZE + ymMe +(l + 7m—-;—iM2>—————ddliigcﬁo] (60)
c=%E+mM2-(l+¢n;ha2>§i§§ﬂ (61)
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X

TSr the particular case of stratospheric flight m = x = 1, equation (58)
can be solved in terms of the relative pressure, yielding

“=B-A (62)
where
_ T 5 . d log Tx |
A_w[l+7M +————dlogMJ (63)
5 . Codt > 4 log Cpg (64)
A S+ M+ d log M
N 2 dlogk
c =0 e - i} 6
M2_1+7M dlogbﬂ (65)

The altitude associated with the flight Mach number M 1n the strato-
sphere is given by

Rt Rt B ~ A
= - BT =h T L= 4 66
h =hy -3 log = , + 28 log > (66)

Stationary Fuel Consumption, Free Time,
Free Horizontal Distance

For K; =Kz =0, Kp =1, equation (49) yields
-EM 93(1 + 74L:-2M2) + 7M:rég +
M 2 o
qEﬂ + N%lj‘-‘l(l + ﬂ_;_lma) + 7M2u§§] =0 (67)

an equation which can also be rewritten as equation (58), provided one
defines
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T 2 - 1...2\4 log ¢
A =X _ omyM© - (1 Y2 = =M ) i 68
W T d log M (68)
o a log( Do )
Cn M c, T
_ “Do 2 o - 1 2\ %%
B = 1 -x - + (1 + M 6
> %3+ ymM=(1 - x - ¥) ( e T W (69)

Cye

T
K 2 12\ log( K*)
C=L2211 + ymM=(1 + x + + (1 + — =M
( y) ( 7 /" a log M

(70)

=
o

o

Concerning stratospheric flight x =m =1, y =0 the relative pressure-
Mach number relationship is represented by equation (62) while the
altitude-Mach number relationship is supplied by equation (66), where

(71)

A = Ei 1 - E_Egg_fi
W d log M

C
Do
2 d log( )
B = CpoM + Coe T

2
A d log M (72)

(73)

Stationary Horizontal Distance, Free Time,
Free Fuel Consumption
For K; =Ko =0, Kz =1, equation (49) yields

= _ 12 orecE -
am(“ fn—z‘"M) oM = 0 (74)

By simple transformations, the above equation can be again rewritten
as equation (58), provided

N
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T [ d log T
A= X% 2 (l - 1 2> %
W -;me A d log M (75)
B = CDOMQZ + 7mM2 + (l + fn—iM2>le—gC’@ (76)
AL 2 d log M
- X 2 _ - 1,,2\d log K
C o5 2 + ymM (1 + 71“—24«1 >———d Tos M:l (77)

With regard to stratospheric flight, equations (62) and (66) hold,
where

¥*
Y TIog M } (78)

2
5 - OpoM L,Ma%} (79)

NK 2 dlog K
c=Np - 80
el ™ T Ml (80)

Comments on Solutions

(A) Consider for the sake of discussion, the minimum time problem
(free fuel consumption, free horizontal distance) and transform equa-
tion (31) from the (h,V) plane into the (he,V) plane where h, 1is a new

variable defined as
2
he 2 (81)

and termed energy height. The associated result is that

. Fﬂ{l =0 (82)
N 3 ov he=Constant

L
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The above equation constitutes the analytical basis for the energy-

- height method (see ref. 2), in which the speed for best climb is deter- "
mined as the velocity maximizing the power excess EV (available power

minus required power) for constant value of the energy height he .

With the graphical-analytical procedure associated with the energy
method several nonoptimum points (sometimes 10 to 15) must be computed,
for each value of he, as a preliminary step toward finding the optimum

operating condition.

With the analytical solutions of the present report the optimum
operating technique is supplied by a straightforward computational pro-
cedure. The advantages of the above procedure should be especially
evident in the case where systematic design analyses are in order, such
as those required to study the effect of variations of wing loading or
thrust loading on the optimum flight program.

==

(B) With equation (45) the thrust function is written as the product
of a function Tl(M) of the Mach number only times a function Te(c) of

the relative density only. Consider, for the sake of discussion, a
constant-geometry turbojet engine operating subsonically at constant RPM
of the turbine-compressor group. For the above system, the relationship
(45) is rigorously true in the isothermal stratosphere. The same rela-
tionship, however, is only an approximation in the troposphere. Thus,
if a more exact solution is desired for the optimum tropospheric flight
program, some refinement in the analytical representation of the thrust
is necessary.

A convenient method of achieving this end consists of dividing the
altitude-Mach number plane into a suitable number of regions, and uti-
lizing a relationship of the form of equation (45) in each of these
regions. 1In general, the functions Tl(M) and Tg(o) have a different

form from region to region. The total number of regions required evi-
dently depends on the degree of accuracy which is desired.

It must be stressed that this procedure unavoidably leads to further
discontinuities in the Mach number and/or the altitude on the line of
separation between one region and another. As a consequence, appropri-
ate fairings must be introduced a posteriori in order to join the differ-

ent branches of the optimum flight progra.‘m.l

1lThe authors feel that, with regard to the application of the present )
theory, two possible types of problems must be considered, namely: (1)
design of an aircraft and (2) planning of flight operations for an air-
eraft which has already been designed. The more precise procedure out- .
lined in (B) is, in general, not necessary for problems of type (1) but .
may appear desirable for some problems of type (2).
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NUMERICAL EXAMPLES

In this section numerical analyses are presented for typical
turboJet-powered aircraft. The effects of variations in wing loading
on the solutions are studied. The examples described are confined to
the problem of stationary time, with the fuel consumption and horizontal
distance traveled remaining free; however, each of the remaining prob-
lems listed in the section entitled "Formulation of Lagrange Problem"
may be treated in an analogous manner.

Aerodynamic Characteristics

Two hypothetical aircraft are considered as a basis for the fol-
lowing analyses. They are designated as configuration A and configura-
tion B, respectively. For both of them the drag polar is supposed to
obey equation (42) and the thrust equation (45), with x = 0.75 in the
troposphere and x = 1 1n the stratosphere.

In relation to configuration A, the ratio CDo/CDoo is plotted
as a function of the Mach number in figure l(a), where Cp,, denotes

zero-1ift drag coefficient evaluated at M = O. The analogous curve

for configuration B is presented in figure 1(b). The primary difference
between configurations A and B lies in the fact that the drag rise in
the transonic region is much steeper for configuration B.

For both configurations, the ratio K/Ko as a function of the
Mach number is given in figure 2, where K, denotes induced drag factor
evaluated at M = 0. The ratio T;/T*O as a function of the Mach number

is given in figure 3.

Computations for Configuration A

The hypothetical aircraft designated as configuration A is consid-
ered in this section. It is assumed that the low-speed aerodynamic )
characteristics are such that Cpoo = 0.029 and K, = 0.2. The static
thrust at the tropopause is supposed to be such that T*OIW = 0.411,

implying that the ratio of sea-level static thrust to weight is
'I‘OO/W = 1.



Variable path ineclination subarc.- The subarc of the extremal solu-
tion resulting from the solution of equation (58) is now considered.

First of all, the functions A(M), B(M), and C(M), defined by
equations (59) to (61), are determined for both tropospheric and strato-

spheric flight conditions. These functions are plotted in figures 4 to
6.

Secondly, as a computational aid, the relationship (eq. (58))
between A/B, C/B, and n in the troposphere is calculated and plotted
in figure 7. It leads to a family of straight lines, one for each value
of the pressure ratio =.

Notice that, for a given Mach number M, the sequence of graphical
operations involved in solving equation (58) with the aid of figure 7
permits one to obtain only an approximate value for the pressure ratio
Ty Nevertheless, the inherent error can be corrected by writing the
exact solution of equation (58) in the form

n = ng(l + B) (83)

The correction term ® << 1 can be computed by introducing equation (83)

into equation (58) and linearizing the latter into

AP+ B(L ¢ mx)] - Brg2(1+ 28) + C 20 (8Y4)

As a consequence, the correction & 1is

5z _ ArgtTE - Br,® + C

- 2 1 (85
2BrgS - A(l + mx)m,~t¥

For the particular case of wing loadings W/S of 60, 70, and
80 1b ft-2, the solutions of equation (58) are plotted in figure 8 in
the altitude-Mach number plane. As the graphs indicate, an increase in
wing loading shifts the optimum speed distribution w = O toward the
region of higher velocities. Furthermore, all the curves o = 0 inclu
a branch h = Constant at the tropopause, the amplitude of which
increases as the wing loading increases. In the figure, the solid
line AB denotes the portion of the w = 0 curve which is of interest
for flight operations, insofar as it lies in the region of the
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altitude-Mach number plane where T - D > 0. The lines DBE consisting
of long dashes represent the geometrical locus of the points along
which the thrust T equals the drag D. Finally, the lines CB con-
sisting of short dashes indicate the portion of the w = O curve which
is of no interest for flight operations, insofar as it lies in the
region of the altitude-Mach number plane where T - D < O.

Parenthetically, it is to be stated that while the solid line AB
must be flown in the sense of increasing speeds, the short dotted line
C3 can be flown only in the opposite sense. Thus, while AB is a solu-
tion of minimum time, the curve CB is a solution of maximum time.

Typical extremal trajectory.- A typical2 complete extremal trajec-
tory is shown in the altitude-Mach number plane in figure 9, where I
denotes the initial flight condition, and F the final flight condition.
The subarcs IG and LF are to be flown in a vertical dive, in accordance
with equation (25). The subarc GHKL is flown along the w =0 curve.

Notice that the particular extremal path sketched in figure 9
embodies several corner points, that is, several points where the func-
tion h(M) shows an angular discontinuity. The latter, in turn, is
the origin of a jump in the function ©6(M). Clearly, the above dis-
continuities are not physically achievable in flight; they appear only
as the consequence of the particular hypotheses (namely, the neglect of
centripetal accelerations) under which the present problem has been
treated. Therefore, in practical applications, the Jjoining together of
the separate subarcs is to be accomplished by means of appropriate
failrings, qualitatively indicated by the dashed lines in the figure.
The fairing in gquestion must be consistent with the structural capacity
of the aircraft, with the physiological ability of the pilot to with-
stand acceleration and, furthermore, with the thrust-drag characteristics
of the aircraft.

Computations for Configuration B

The hypothetical aircraft designated as configuration B (fig. 1(b))
is now considered. This configuration is characterized by the following
parameters: Cpog = 0.023, K, = 0.2, and T, [W = 0.411 (ToofW = 1).

Variable path inclination subarc.- The functions A(M) and C(M)
for configuration B are identical with those for configuration A and are
given by figures 4 and 6. The function B(M) for configuration B is
presented in figure 10 for the troposphere and stratosphere.

2p11 possible combinations of subarcs which may arise from the
solution of the boundary-value problem have been indicated in figure 1
of reference 1.
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The solutions of equation (58) in the altitude-Mach number plane
for wing loadings of 60, 70, and 80 lb ft-2 are plotted in figure 11. -

A comparison between figures 8 and 11 immediately yields the
principal difference between configurations A and B: configuration A
(mild drag gradient in the transonic region) yields a single-valued
relationship in the altitude-Mach number plane, while configuration B
(strong drag gradient in the transonic region) yields a multiple-valued
relationship in certain regions of the altitude-Mach number plane.

This implies, therefore, that assocliated with configuration B there
are three branches of the solution: a subsonic, a transonic, and a
supersonic branch. It can be shown that the portion of the transonic
branch embedded in the region of the altitude-Mach number plane where
T -D >0 1is associated with a maximum time trajectory.

~ -

The following symbology has been used in figure 11. The solid
lines AB and EG denote the portions of the w = 0 curve which are of
interest for flight operations. They lie in the region of the altitude-
Mach number plane where T - D > 0 and, furthermore, they minimize the
climbing time, as can be shown by Green's theorem (ref. 3).

The line HBDGK consisting of long dashes represents the geometrical
locus of the points along which T - D =0

The lines BC, CD, and GL (short dashes) are embedded in the region
of the altitude-Mach number plane where T - D < O and have, therefore,
little interest for flight operations. They can only be flown in the
sense of decreasing altitudes. Furthermore, the two lines CB and LG are
associated with maximum time trajectories as Green's theorem (ref. 3)
shows.

Remark.- The exact solution of possible types of boundary-value
problems arising with configurations of type B may be the origin, in
practice, of important analytical difficulties, of the same kind
encountered by the senior writer in reference 4.

The difficulties in question are essentially concerned with the
determination of the sequence of subarcs w =0 and cos 6 = 0O which
form an extremal arc.

CONCLUSIONS

The climbing technique for a turbojet-powered aircraft is analyzed
from the standpoint of extremizing the time required, the fuel consumed,
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or the horizontal distance flown by the aircraft in flying from one
speed-altitude combination to another.

Trajectories minimizing any one of the above three quantities are
investigated for the case where each of the other two is either free of
choice or prescribed. It 1s shown that the totality of extremal arcs
consists of a number of constant path inclination subarcs and a number
of variable path inclination subarcs.

With regard to the latter, solutions in a closed form are developed,
thus bypassing the graphical-analytical procedure known as energy-height
method. It is shown that the altitude-Mach number relationship can be
either a single-valued type or a multiple-valued type, depending upon
the type of drag polar utilized. In the latter case, three branches of
the solution generally exist: a subsonic branch; a transonic branch,
being of no interest; and a supersonic branch.

Purdue University,
Lafayette, Ind., July 8, 1958.
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